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Abstract

A new three-dimensional (3D) matrix-free implicit unstructured multigrid finite volume (FV) solver for structural
dynamics is presented in this paper. The solver is first validated using classical 2D and 3D cantilever problems. It is shown
that very accurate predictions of the fundamental natural frequencies of the problems can be obtained by the solver with
fast convergence rates. This method has been integrated into our existing FV compressible solver [X. Lv, Y. Zhao, et al.,
An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady compressible flows
with moving objects, Journal of Computational Physics 215(2) (2006) 661–690] based on the immersed membrane method
(IMM) [X. Lv, Y. Zhao, et al., as mentioned above]. Results for the interaction between the fluid and an immersed fixed-
free cantilever are also presented to demonstrate the potential of this integrated fluid–structure interaction approach.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Over the last five decades a wide variety of numerical methods have been proposed for the numerical solu-
tion of partial differential equations. Among them the finite element (FE) method has firmly established itself
as the standard approach for problems in computational solid mechanics (CSM), especially with regard to
deformation problems involving non-linear material analysis [1,2]. As a contemporary, the FV method devel-
oped from early finite difference techniques and has similarly established itself within the field of computa-
tional fluid dynamics (CFD) [3,4]. Both classes of methods integrate governing equations over pre-defined
control volumes [3,5], which are associated with the elements making up the domain of interest. Furthermore,
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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both approaches can be classified as weighted residual methods where they differ in the weighting functions
adopted [6].

In many engineering applications, there is an emerging need to model multiphysics problems in a coupled
manner. In principle, because of their local conservation properties the FV methods should be in a good posi-
tion to solve such problems effectively. Over the last decade a number of researchers have applied FV methods
to problems in CSM [7] and it is now possible to classify these methods into two approaches, cell-centered [8–
12] and vertex-based ones [6,7,13,14]. The first approach is based upon traditional FV methods [3] that have
been widely applied in the context of CFD [4]. Subsequently, such techniques have been applied to CSM prob-
lems using structured [8,9] and unstructured meshes [10–12,15]. With regard to these techniques, it should be
noted that when solid bodies undergo deformation the application of mechanical boundary conditions is the
most effective if they can be imposed directly on the physical boundary. Obviously, the cell-centred approx-
imation may have difficulty in prescribing the boundary conditions, when complex geometries are considered
and where displacements at the boundary are not prescribed directly and in a straight forward manner.

The second approach is based on some basic ideas of traditional FE methods, which employs shape func-
tions to describe the variation of an independent variable, such as displacement, over an element and is there-
fore well suited to complex geometries [6,7,13,14]. The approach can be roughly classified as a cell-vertex FV
method [4,6].

Both the above FV approaches apply strict conservation laws over a control volume and are comparable, if
not better in accuracy and efficiency, to the traditional FE methods [7,10]. Some researchers have attributed
this to the local conservation of independent variables as enforced by the control-volume methods employed
[13,14] and others to the enforced continuity of the derivatives of the independent variables across cell bound-
aries [10].

The objectives of this paper are to describe the development and validation of a new vertex-based unstruc-
tured multigrid FV method for structural dynamic problems. It should be noted that the approach presented
in this paper belongs to a special class of cell-vertex methods that employ non-overlapping control volumes
[7,16–18]. It should also be noted that the approach is different from previous non-overlapping FV methods
[6,7,13,14] in that we do not utilize shape functions at all and we have developed an effective implicit unstruc-
tured multigrid method for fast solution convergence.

The paper is structured as follows. In Section 2, the mathematical formulation and detailed numerical treat-
ments are described. In Section 3, a brief description of the implemented convergence acceleration techniques
is presented. This is followed by a short description of the coupling with the fluid solver TETRAKE in Section
4. In Section 5, the method is validated by applying it to several test cases. Finally, several concluding remarks
are given in Section 6.

2. Governing equations and numerical methods

2.1. Governing equations

The governing equations for structural dynamics based on the continuum model are the Cauchy’s
equations:
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ð2:1Þ
where rij is the stress tensor defined for either a fluid or solid medium, with the correlation rij ¼ rji. bx, by and
bz are the body force components in the three directions of Cartesian coordinates. q is the material density. dx,
dy and dz are the three components of displacement vector. This system of equations can be expressed in a
more compact form:
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~bþr � rij ¼ q~a; ð2:2Þ

where~a is the acceleration vector. In the theory of elasticity, Eq. (2.2) is variously described as the stress equa-
tion of small motion [21], the equation of equilibrium [22] or the equation of motion [23]. The term equation of
dynamic equilibrium will be employed in this paper to distinguish the dynamic problems considered in this
research from static structural problems. Damping is the ability of a structure to dissipate energy and in struc-
tural mechanics the most common damping device is the ideal linear viscous damper [24–26]. The ideal linear
viscous damper opposes structural motion with a force proportional to velocity. Thus, for those cases where
damping is required, the linear viscous damping term is incorporated into Eq. (2.2) as follows:
~bþr � rij ¼ q~aþ c~U ; ð2:3Þ
where ~U is velocity vector and c is the coefficient of viscous damping.

2.2. Constitutive relationship for stress and strain

The generalized form of Hooke’s law gives the following constitutive relationship between stress and strain
for an isotropic homogeneous material undergoing small strains [27] in three dimensions:
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where E and m are, respectively, Young’s modulus and Poisson’s ratio, the stress vector is rT ¼ ½rxx;ryy ; rzz;
rxy ; ryz; rzx� and the strain vector eT ¼ ½exx; eyy ; ezz; exy ; eyz; ezx�. The elastic strain at any instant in time may be
expressed in terms of the total and initial strains. Thus the constitutive relationship for an isotropic homoge-
neous material undergoing linear elastic strains is given by
r� Dðe� e0Þ ¼ 0 in Xs; ð2:5Þ

where D is the constitutive property matrix, given by the term in the large square brackets in Eq. (2.4) and e
and e0 are the total and initial strains, respectively. Xs is the structural domain.

2.3. Displacement formulation

This work is based on a linear strain–displacement formulation using the small strain assumption, which is
valid for strains of the order of a few percent [21]. Thus the strains may be defined in the general displacement
form as
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where ~d is the vector of displacements and L is the matrix of differential operators. Applying the constitutive
stress–strain equation (2.4) and the strain–displacement equation (2.6) to the dynamic equilibrium equatuion
(2.3) yields the displacement formulation:
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bþr � ðDL~d � De0Þ � q~a� c~U ¼ 0 in Xs; ð2:7Þ

where Xs represents the structural domain. Eq. (2.7) is subject to the boundary conditions:
~d �~dP ¼ 0 for Cd;

T ðDL~d � De0Þ �~tP ¼ 0 for Ct;
ð2:8Þ
where the structural boundary is a combination of prescribed displacement and traction boundaries, i.e.
Cs ¼ Cd [ Ct and T is the matrix of outward normal operators such that
T ¼
nx 0 0 ny 0 nz

0 ny 0 nx nz 0

0 0 nz 0 ny nx

0B@
1CA; ð2:9Þ
where n is the outward unit normal vector to the domain boundary with components nx, ny and nz.

2.4. Discretization of the displacement equations

Eq. (2.7) is discretized on an unstructured tetrahedral grid and a cell-vertex scheme is adopted here, i.e., all
computed variables in vector ~d are stored at vertices of the tetrahedral cells. For every vertex, as shown in
Fig. 1, a control volume is constructed using the median dual of the tetrahedral grid [19]. In Fig. 1, nodes
A, P, B and C form the vertices of the tetrahedral cell and O is the centre of the element APBC. Points a,
b and c are the centres of the edges AP, BP and CP. 1, 2 and 3 are the centroids of triangles APC, CBP

and ABP, respectively. In the cell-vertex scheme, the computed variables are stored at vertices A, P, B and
C. Triangles O1a, O3a, O3b, O2b, O1c and O2c form part of the control volume surface for node P within
the tetrahedral cell. Likewise, the control volume surfaces for different nodes A, B and C are constructed based
on this idea.

The finite-volume discretization is based on the governing equations in integral form, on which spatial dis-
cretization is performed over the control volume surrounding a node (P for example):
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Fig. 1. Portion of control volume around vertex P within tetrahedron ABCD.
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The first term on the left-hand side is calculated using a cell-based method:
Z Z Z
CV
ðr � ðDL~d � De0ÞÞ dV ¼ tSCV

ðDL~d � De0Þ �~n dS ¼
Xncell

i¼1

½ðDL~d � De0Þ �~nDSc�i; ð2:11Þ
where ncell is the number of cells associated with node P and DSci is the part of control volume surface in cell i.
By using the following relation for a given cell
tSCV
d~S ¼ 0;
the total vector surface of the control volume in a cell i becomes
~nDSci ¼
1

3
ð~nDSpiÞ;
where~nDSpi is the surface vector of the face opposite node P of the tetrahedron under consideration. Thus, the
calculation of the first term on the left-hand side of Eq. (2.10) can be simplified as
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3
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Here the value ðDL~d � De0Þi is calculated at the center of the tetrahedron with a node P, and can be obtained
by using Green’s theorem based on the variables at the four vertices of the tetrahedron. Similar to the Galer-
kin type of formulation, the gradient of a variable / at the center of a tetrahedron is evaluated as follows:
grad/c ¼ �
P4

i¼1/i9Si

27V
¼ � 1

3

P4
i¼1/iSi

V
; ð2:13Þ
where /i is the variable at a vertex i of the tetrahedron and Si is the surface area that is opposite to node i, V is
the volume of the tetrahedron. Gradients at the vertices are obtained by volume averaging of the gradients at
the centers of cells associated with the vertex under consideration.

If we use the spatial averages of density, acceleration and velocity, then Eq. (2.10) can be written as
1

3
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½ðDL~d � De0Þ �~nDSp�i þ ðb� c~UÞ � V � q~a � V ¼ 0; ð2:14Þ
where V is the volume of the tetrahedron. Knowing that ~a ¼ o~U
ot , after arrangement we have
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An implicit scheme is adopted for Eq. (2.15) and the time dependent term is discretized using an implicit
three-level asymmetric scheme. In order to obtain time-accurate solutions, we add a pseudo time term to this
equation:
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; ð2:16Þ
where the superscript (nþ 1) denotes the physical time level and all the variables are evaluated at this time
level. The derivative with respect to a pseudo time s is discretized using a first-order-accurate forward differ-
encing scheme. After moving the rest of the terms to another side of the equation, we have
~U nþ1;mþ1 � ~Unþ1;m

Ds
¼ eRnþ1;m

¼ 1
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The solution of the velocity vector is sought by marching the solution to a pseudo steady state in s. Here m

and mþ 1 denote the initial and next pseudo time levels. Once the artificial steady state is reached, the deriv-
ative of ~U with respect to s becomes zero, and the solution satisfies eRnþ1;m ¼ 0. Hence, the original equation
(2.15) is fully recovered. Therefore, instead of solving the equations in each time step in the physical time
domain (t), the problem is transformed into a sequence of steady-state computations in the artificial time
domain (s). Eq. (2.17) can be integrated in pseudo time by an explicit five-stage Runge–Kutta scheme. How-
ever, the pseudo time step size may be restricted if the physical time step size is very small. Hence, a fully impli-
cit dual time stepping scheme is adopted here. A Taylor series expansion is performed for the residual in Eq.
(2.17) with respect to the pseudo time for node P:
eRnþ1;mþ1
p ¼ eRnþ1;m

p þ oeRp

oð~UÞp
Dð~UÞp þ

Xnbseg

j¼1

oeRp

oð~UÞj
Dð~UÞj; ð2:18Þ
where nbseg is the number of edges connected to P, which is also equal to the number of neighbouring points
connected to point P through the edges. And for the viscous damping and physical time-dependent terms, we
have
ð~UÞnþ1;mþ1
p ¼ ð~UÞnþ1;m

p þ Dð~UÞp: ð2:19Þ

After combining all the residual terms at every node in the structural domain into a vector and dropping the
third term of the right-hand side of Eq. (2.18), we have
eRnþ1;mþ1 ¼ eRnþ1;m þ ADð~UÞp �
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And the whole-field equivalent equation (2.17) can then be re-written as
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where Dð~UÞp ¼ ~U nþ1;mþ1 � ~Unþ1;m and Mp ¼ qV is the mass of the control volume around the current node P.

We need to evaluate the derivative oðo~d=oX iÞ
o~U

ðX i ¼ x; y; zÞ in order to determine the Jacobian A. It can be calcu-
lated as follows:
oðo~d=oX iÞ
o~U

¼ oðo~d=oX iÞ=oX i

o~U=oX i

¼ o2~d=oX 2
i

o~U=oX i

; ð2:22Þ
where ~d is the displacement vector at node P. That is
eA Dð~UÞ
Ds
¼ eRnþ1;m; ð2:23Þ
thus,
Dð~UÞ
Ds
¼ eeRnþ1;m; ð2:24Þ
where
eeRnþ1;m ¼ eA�1eRnþ1;m and eA ¼ Dtþ1:5Ds

Dt þ cDs
q � ADs.
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Further approximation can be introduced in order to achieve matrix-free computation. If we employ point
implicit treatment to the preceding equations, then only the diagonal term in eA is used in the pseudo time step-
ping. As a result, the equation for every node can now be written as
Dð~UÞ
Ds
¼ eeRnþ1;m; ð2:25Þ
where
eeRnþ1;m

p ¼ eA�1
pp
eRnþ1;m

p and eA�1
pp ¼ diag½ðDtþ1:5Ds

Dt þ cDs
q � ADsÞ�1�.

Pseudo time stepping is then performed in Eq. (2.24). In this work, a five-stage Runge–Kutta time integra-
tion algorithm is used to march the numerical solution in pseudo time s until convergence is reached [19].
Therefore, the converged solution from the pseudo time steady-state equations becomes the time accurate
solution at current physical time. To advance the solution in pseudo time from m to mþ 1, the formulation
of a five-stage Runge–Kutta scheme is as follows:
ð~UÞð0Þp ¼ ð~UÞ
m
p ;

ð~UÞð1Þp ¼ ð~UÞ
ð0Þ
p � a1DseeR ½ð~UÞð0Þp �;

ð~UÞð2Þp ¼ ð~UÞ
ð0Þ
p � a2DseeR ½ð~UÞð1Þp �;

ð~UÞð3Þp ¼ ð~UÞ
ð0Þ
p � a3DseeR ½ð~UÞð2Þp �;

ð~UÞð4Þp ¼ ð~UÞ
ð0Þ
p � a4DseeR ½ð~UÞð3Þp �;

ð~UÞð5Þp ¼ ð~UÞ
ð0Þ
p � a5DseeR ½ð~UÞð4Þp �;

ð~UÞðmþ1Þ
p ¼ ð~UÞð5Þp ;

ð2:26Þ
where the stage coefficients for a five-stage Runge–Kutta time integration is as follows:
a1 ¼ 1=4; a2 ¼ 1=6; a3 ¼ 3=8; a4 ¼ 1=2; a5 ¼ 1:
After the velocity vector at physical time levels nþ 1 has been solved, we calculate the delta displacement
during this time step as
D~d ¼ ð
~Unþ1 þ ~UnÞ

2
� Dt: ð2:27Þ
3. Convergence acceleration techniques

3.1. Local time stepping in pseudo time

Due to the disparity in cell sizes in unstructured grid calculations, the chosen time step size for the entire
mesh will be the minimum of the local time steps of all the control volumes for time accurate calculations. In
this work, the large variation in grid size for the unstructured mesh will restrict the time step used and the
smallest control volume dictates the maximum time step size. In order to overcome the above problems, each
control volume can be advanced in pseudo time by its own maximum local time step, which greatly enhances
the convergence rate. In this study, the maximum permissible local time step size is determined by the critical
time step size:
Ds 6 Dscrit ¼ 2

xmax

; ð3:1Þ
where xmax is the largest natural circular frequency. For the cantilever case, the natural frequency is given by
xmax ¼
2c
Dl
;
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where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=qð1� t2Þ

p
is the wave propagation velocity. Dl is the characteristic length scale associated with

a node under consideration. Normally, it is taken as the smallest height of all the tetrahedral cells sharing the
node. Substituting xmax into the equation for critical time step yields
Ds ¼ Dl
c
:

Ds is the time needed for the wave to propagate through the cell of characteristic length Dl. The local time step
size is estimated via CFL stability condition as
Ds ¼ CFL � Dl
c
¼ CFL � Dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E=qð1� t2Þ
p : ð3:2Þ
The global physical time step size Dt for the entire mesh will be the minimum of the local time steps of all the
control volumes for time accurate calculations. That is
Dt ¼ minfDs1;Ds1; . . . ;Dsnsg; ð3:3Þ

where ns is the total number of nodes.

3.2. Implicit residual smoothing

In order to speed up the convergence rate, an implicit residual smoothing scheme developed for unstruc-
tured grids is employed. The idea behind this is to replace the residual at one point of the domain with a
smoothed or weighted average of the residuals at the neighbouring points [19]. The averaged residuals are cal-
culated implicitly in order to increase the maximum CFL number, thus increasing the convergence rate. Nor-
mally this procedure allows the CFL number to be increased by a factor of 2 or 3. The smoothing equation for
a vertex k can be expressed as follows:
Rk ¼ Rk þ er2Rk; ð3:4Þ

where R is the smoothed residual, R is the original residual, and e is the smoothing coefficient, which can be
defined as
e ¼ max
1

4

CFL

CFL�

� �2

� 1

" #
; 0

( )
; ð3:5Þ
where CFL* is the maximum CFL number of the basic scheme. The solution to the preceding equations can be
obtained on an unstructured grid by using the Jacobi iterative method as follows:
RðmÞk ¼ Rð0Þk þ e
XnumnodðkÞ

i¼1

RðmÞi � RðmÞk

h i
;

i.e.
RðmÞk ¼ Rð0Þk þ e
PnumnodðkÞ

i¼1 Rðm�1;mÞ
i

1þ e � numnodðkÞ ; ð3:6Þ
where numnodðkÞ is the number of neighboring nodes of vertex k.

3.3. The multigrid method

It is well known that multigrid methods can dramatically reduce the overall cost of CFD simulations.
The basic idea of the multigrid method is to carry out early iterations on a fine grid and then progressively
transfer these solutions and residuals to a series of coarser grids. On the coarser grids, the low frequency
errors become high frequency ones and they can be easily eliminated by a time stepping scheme. The equa-
tions are then solved on the coarser grids and the corrections are then interpolated back to the fine grid.
The process is repeated over a sufficient number of times until satisfactory convergence on the fine grid
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is achieved. In this study, based on the early works done by Zhao et al. [19,20], an efficient unstructured
multigrid scheme has been developed for the equation of dynamic equilibrium, allowing convergence to
be achieved with much less CPU time than the single-grid scheme. The multigrid algorithm is described
as follows. The discretized dynamic equation can be expressed by Eq. (2.23), which is repeated here for
convenience:
Dð~UÞ
Ds
¼ eeRnþ1;m; ð3:7Þ
where ~U is the velocity vector. This equation is solved iteratively by a dual-time stepping scheme. An pseudo
code is given below to illustrate the basic procedures of the multigrid scheme. The outer cycles are based on the
physical time t, which is numbered from 1 to ktmax, whereas the inner cycles are based on the pseudo-time s,
which is numbered from 1 to max_itr_sub. The grid levels range from 1 to nmg, where 1 is the finest level and
nmg is the coarsest level. P h

hþ1 is the prolongation operator from level hþ 1 to h, and Qhþ1
h and T hþ1

h are the
residual transfer and restriction operators from level h to hþ 1.

ALGORITHM START
call setupinterconnect !—> build up inter-connectivity relationship between levels

DO kt ¼ 1, ktmax !—> start of physical time step

DO mg ¼ 1, nmg

call cvvol(mg) !—> calculate the volumes for control volume (CV) and cell

call clhaut(mg) !—> calculate CV characteristic length for determination

!—> of Ds and Dt computation

ENDDO
call dtsize(mg ¼ 1) !—> computation of the time-step size for the finest level

DO itersub ¼ 1, max_itr_sub !—> start of sub-iteration

DO ialpha ¼ 1, 5 !—> 5-stage Runge–Kutta time integration process

call fvsolver(mg ¼ 1) !—> solve Eq. (3.1) for ~Ukt
1 following the way

!—> described in forgoing sections

ENDDO

DO mg ¼ 2, nmg

call transfrsol(mg � 1) !—> restrict solution from h to hþ 1
!—> ð~U ð0Þhþ1 ¼ T hþ1

h
~U hÞ.

call transfresd(mg � 1) !—> restrict residual from h to hþ 1

!—>ðeeR ð0Þhþ1 ¼ Qhþ1
h
eeRð~U hÞÞ.

IF (itersub.eq.1) THEN

call dtsize(mg) !—> calculate the time-step size for the current level

ENDIF

DO ialpha ¼ 1, 5
call fvsolver(mg) !—> solve Eq. (3.1) for ~U kt

mg based on the initial

!—> solution ~U ð0Þhþ1 and initial residual
eeR ð0Þhþ1

ENDDO

ENDDO

DO mg ¼ nmg, 2, �1
call transfrcorct(mg) !—> prolongate correction from hþ 1 to h

!—> ð~Uþh ¼ ~U h þ Ih
hþ1ð~Uþhþ1 � ~U

ð0Þ
hþ1ÞÞ. Here ~Uþh is

!—> the updated solution for the finer grids

ENDDO
ENDDO !—> end of sub-iteration

DO mg ¼ 2, nmg

call transfrsol(mg � 1) !—> restrict solution from h to hþ 1
ENDDO
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DO mg ¼ 1, nmg

call updgrid(mg) !—> finally update the solid mesh

ENDDO

ENDDO !—> end of physical time step

ALGORITHM END

For detailed discussion of the mesh-to-mesh transfer operators, please refer to Refs. [19,20]. One should
note that we always use the initial inter-mesh connectivity, which is built up before the first time step starts,
to perform the mesh-to-mesh transfer operations. In order to enable the solver to tackle more geometrically
complex structures, the search for nodes within the boundary faces (edges for 2D) will continue after the
search for nodes within the cells are performed if the user specifies that the physical wall of the geometry is
curved. See Fig. 2 for example, a normal procedure cannot find a corresponding finer grid cell for the coarser
grid node P. It means the node P cannot get a proper solution vector from the finer grid, which can pose a
serious problem while solving the dynamic equation (3.1). Following the boundary node projection algorithm
proposed in [20], we resort to finding a projection node for node P in the nearest finer mesh cell face and then
use this projected node to perform the necessary multigrid operations.

4. Coupling with the fluid solver

We have already reported the development of a new parallel unstructured multi-grid preconditioned com-
pressible Navier–Stokes solver in [19]. Here we aim to extend it for fluid–structure interaction simulation. The
biggest challenge here is how to couple the two modules and synchronize them. Our solution algorithm is
shown in Fig. 3, from which it may be seen that different time stepping sizes between the fluid and the structure
solvers are allowed. In the beginning of every physical time step, the fluid solver (TETRAKE) is run to solve
the fluid domain. And during this stage, IMM [19] is used to impose the boundary conditions across the fluid–
structure interface, where those fluid cells crossing the interface need special treatment. As shown in Fig. 4 for
example, a fluid cell 1234 is cut by the interface. Nodes 1, 2 and 3 lie in the fluid domain while node 4 is in the
structural domain. abc, def and ghi are triangles from the shell mesh of the structural domain. As described in
[19], convection fluxes are computed based on mesh edges. In the computation of the convection flux along
edge 14, the flow conditions at node 1 and ghost node 4 (g14) will be involved. The conditions at ghost node
4 (g14) is determined as follows:

(1) Identify the intersection point I1 between the edge 14 and the interface.
(2) Identify the interface surface triangle in which intersection point I1 lies.
(3) Determine the velocity ~uI at intersection point I1 using a area weighted scheme with the knowledge of

velocities at node a, b and c.
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(4) Extrapolate to find velocity at ghost node g14 using the flow conditions of node 1 and the velocity of the
intersection point I1.

(5) Extrapolate to obtain pressure and density at ghost node g14 using the known pressure, density and gra-
dients at node 1.
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Extrapolations of ghost-node velocities are illustrated in Fig. 5a and b. Taking node 1 as the real node,
velocity at ghost node g14 is calculated as follows:
~ug14�~uI

~u1�~uI
¼ � jr4I j

jr1I j
for 0 6 jr4I j 6 jr1I j;

~ug14�~uI

~u2�~uI
¼ � jr4I j

jr2I j
for jr1I j < jr4I j:

8<: ð4:1Þ
Therefore,
~ug14 ¼ � jr4I j
jr1I j � ð~u1 �~uIÞ þ~uI for 0 6 jr4I j 6 jr1I j;

~ug14 ¼ � jr4I j
jr2I j
� ð~u2 �~uIÞ þ~uI for jr1I j < jr4I j;

8<: ; ð4:2Þ
where~uI ;~u1 and~u14 are the velocity vectors at intersection point I1, node 1, ghost node g14. In Fig. 5b, we have
jr2I j ¼ jr4I j and jr110 j ¼ jr14j. ~u2 is evaluated as follows:
~u2 ¼
ðjr110 j � jr12jÞ~u1 þ ðjr2I j � jr1I jÞ~u10

jr14j
;

where~u10 ¼~u1 þ~r41 � r~u1. In this work, the structure and fluid domains are coupled by enforcing the velocity
continuity condition:
~us ¼~uf ; ð4:3Þ

where~us is the velocity vector of a structure surface node and~uf the neighbouring fluid velocity. And Eq. (4.3)
is used to extrapolate fluid velocity to its corresponding ghost nodes. The extrapolation of ghost-node pressure
is illustrated in Fig. 5c. Taking node 1 as real node, the ghost-node pressure and density of g14 is obtained by
pg14 ¼ p1 þ~r14 � rp1;

qg14 ¼ q1 þ~r14 � rq1;
ð4:4Þ
where pg14 and qg14 are the ghost-node pressure and density at g14, $p1 and $q1 are their gradients at node 1.
~r14 is the distance vector pointing from node 1 to node 4. Suppose edge 24 is the next edge along which the
convection flux will be computed. We need to determine the ghost conditions for node 4 (g24) again with
the conditions of node 2 and intersection node I2. As a result, every node can become multiple ghost nodes
with their corresponding ghost values since a node can be connected by multiple edges, which is especially true
1
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Fig. 5. (a) Velocity extrapolation for ghost node 4; (b) pressure and density extrapolation for ghost node 4.
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for 3D unstructured grids. The selection of a particular ghost value depends on which edge and node the com-
putation involves, which is the novel feature of IMM [19].

This linear interpolation results in a second-order accurate scheme. It is noted that higher-order MUSCL
interpolation can also be applied here if higher-order accuracy is required. As depicted in Fig. 6, edge 12 is cut
by the fluid–structure interface and I is the intersection point. C is the centre point of edge 12. Local third-
order accuracy can be achieved by introducing ~uL and ~uR:
~uL ¼~u1 þ
1

4
½ð1� jÞD�1 þ ð1þ jÞDþ1 �;

~uR ¼ ð~u1 þ~ug12Þ=2;
ð4:5Þ
where
Dþ1 ¼~ug12 �~u1;

D�1 ¼ 2 � ~12 � r~u1 � ð~ug12 �~u1Þ ¼ 2 � ~12 � r~u1 � Dþ1 :
ð4:6Þ
And~ug12 is the ghost velocity vector of node 2, r~u1 velocity gradient at node 1.~12 is the vector representing the
edge. j is set to 1/3, which corresponds to a nominally third-order accuracy. Pressure and density can be inter-
polated in a similar way. The viscous fluxes and gradients are computed based on fluid mesh cells. In the cell N

in Fig. 4, when the viscous flux is computed for node 1, the flow conditions at node 1, 2 and 3 will be needed,
as well as the ghost node conditions at node 4 (It is g14 in this case. But it would be g24 if the viscous flux for
node 2 is computed).

After the computation of fluid domain, fluid forces acting on the structure are calculated on the fluid–struc-
ture interface and they are applied to advance the movement of the structure. In the structural domain, Eq.
(2.1) is solved by the techniques described above with the fluid forces exerted by ambient fluids as boundary
conditions. Boundary conditions on the surface of the structural domain Xs are described in terms of pre-
scribed traction~tP on the boundary Ct and prescribed displacement ~dP on the boundary Cd. In the IMM,
the loosely coupling relationship between the fluid domain and the structure domain is depicted in Fig. 7.
The fluid forces include pressure p, shear stress rt and normal stress rn, Since the fluid and structural meshes
are non-confirmatory, the fluid pressure needs to be extrapolated to the fluid–structure interface for the com-
putation of fluid forces. And again this extrapolation is edge based. In Fig. 4, I3 is the intersection point
1 1 1
1

[(1 ) (1 ) ]
4Lu u κ κ− += + − Δ + + Δ

1 2 I

1u

12guIu

C

( )1 12 / 2Ru u u= + g

Fig. 6. Introduction of higher-order MUSCL like interpolation.
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Fig. 7. Relation between the structure domain and the fluid domain in fluid–structure interaction.
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between edge 34 and the interface, and we need to calculate the pressure at this point to compute the fluid
force. This extrapolation procedure can be expressed as following:
pI3
¼ p3 þ~r3I � rp3; ð4:7Þ
where pI3
is the fluid pressure on the fluid–structure interface on the side of vertex 3, $p3 are the pressure gra-

dient at vertex 3,~r3I is the distance vector pointing from node 3 to point I3. This linear extrapolation leads to a
second-order accuracy. Note that the higher-order MUSCL scheme similar to Eqs. (4.5) and (4.6) can also be
applied here. And then the result out pressure will be distributed to the structure nodes d, e and f based on an
area weighted scheme. For Newtonian fluids, the fluid stress tensor is given as follows:
��t ¼
rxx rxy rxz

ryx ryy ryz

rzx rzy rzz

264
375; ð4:8Þ
and
rxx ¼ 2l
ou
ox
� 2

3
l

ou
ox
þ ov

oy
þ ow

oz

� �
; rxy ¼ ryx ¼ l

ov
ox
þ ou

oy

� �
;

ryy ¼ 2l
ov
oy
� 2

3
l

ou
ox
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oy
þ ow

oz

� �
; rxz ¼ rzx ¼ l
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oz
þ ow

ox

� �
;
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3
l

ou
ox
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oy
þ ow

oz

� �
; ryz ¼ rzy ¼ l

ow
oy
þ ov

oz

� �
:

where the fluid viscosity l is property of the fluid and a function of temperature. So the fluid stress ~r on the
interface can be calculated as
~r ¼ ��t �~n ¼
rxx rxy rxz

ryx ryy ryz

rzx rzy rzz

264
375 � nx

ny

nz

264
375; ð4:9Þ
where ~n is the unit normal vector of the structure element. In the fluid solver, the velocity gradients are as-
sumed to be constant within one fluid cell [19]. It means that on the fluid–structure interface the gradients
of fluid velocities are equal to those at the cell centroids. But for a cell intersected by the immersed structure,
the gradients are only uniform and continuous for centroids on the same side of the structure. So the compu-
tations of fluid stresses on the interface should use the right gradients of velocity. Use edge 34 in Fig. 4 for
example, the fluid stresses at intersection point I3 should be computed using the gradients of vertex 3, i.e.:
r3 ¼ ��t3 �~n ¼
r3;xx r3;xy r3;xz

r3;yx r3;yy r3;yz

r3;zx r3;zy r3;zz

264
375 � nx

ny

nz

264
375: ð4:10Þ
5. Results and discussion

5.1. Deformation of point loaded fixed-free cantilever structures

5.1.1. Two-dimensional cantilever
A standard problem in structural mechanics is that of a fixed-free cantilever supporting an applied load at

the free end [9,28,29]. The fixed-free cantilever is shown in Fig. 8, where b ¼ 2:0 is the breadth, L ¼ 20:0 the
length of the cantilever and F the applied load. It is assumed that the depth d ¼ 1:0. The static solution to this
problem given by Timoshenko and Goodier [22] allows a slight distortion at the fixed end of the cantilever,
whereas the solution given by Fenner [21] allows no such phenomenon. This test case requires no such dis-
placement or distortion at the fixed end of the cantilever, hence at x ¼ L the y displacement at the free end
of the cantilever according to Fenner [21] is given by
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Table

2D Fix

Load,
Length
Breadt
Densit
Young
Poisso
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dy ¼ �
4FL3

Edb3
; ð5:1Þ
where E is Young’s modulus and d is the depth of the cantilever. The fixed-free cantilever has a load of 200 N
at the free end, as depicted by Fig. 8. Note that the gravity effect is not considered in this study. The static
solution given in Eq. (5.1) is independent of Poisson’s ratio and is applicable to a cantilever undergoing pure
flexure, i.e. no axial loads are supported and the out of plane load on the cantilever is zero. Thus for compar-
ison with the analytic solution a zero Poisson’s ratio is assumed. With the parameters as given in Table 1, Eq.
(5.1) gives the static displacement in y direction at the tip of the cantilever as �0.08 m. Before embarking on a
dynamic problem, a grid convergence study for the static displacement problem is carried out. The domain is
meshed using triangular elements. The following five meshes are studied for increasingly higher mesh density:

� Coarse mesh, 20*2 elements and 33 nodes.
� First refinement, 40*4 elements and 105 nodes.
� Second refinement, 80 *8 elements and 369 nodes.
� Third refinement, 100*10 elements and 561 nodes.
� Final refinement, 200*20 elements and 2121 nodes.

For all of the grids the simulation is initiated by exerting the same load on the right tip of the cantilever
until the solution is converged. The percentage errors in the y displacement are shown in Fig. 9, where per-
centage errors of less than 1.5% for the second mesh and less than 0.1% for the final mesh are observed. Thus
the second mesh is considered to be sufficiently accurate and is used for the rest of the analysis. Fig. 10 shows
the stress distribution in the equilibrium state.

In order to test the capability of this method for predicting dynamics of solid structures, we also perform a
dynamic bending simulation for the fixed-free cantilever. We use a dynamic load, which is a sinusoidal func-
tion of time t:
F ¼ 200 sinð0:05tÞ: ð5:2Þ

With the other parameters as given in Table 1 and depth d ¼ 1:0 m, Eq. (5.1) also gives the maximum displace-
ment in y direction at the tip of the cantilever as 0.08 m. The simulation is kept running for a total of 2315 s.
The cantilever tip displacement–time history in y direction is then plotted in Fig. 11, which has a maximum
displacement of 0.081 m in good agreement with the analytic solution.
1

ed-free cantilever computational parameters Value

F 200 N
, L 20.0 m
h, b 2.0 m
y, q 2600.0 kg/m3

’s modulus, E 10 MPa
n’s ratio, m 0.0
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5.1.2. Three-dimensional cantilever

The 2D problem studied in previous section is then extended to three dimensions and all of the computa-
tional parameters are given in Table 2.

Thus the static y displacement at the neutral axis of the tip given by Eq. (5.1) is about �0.1124 m, which
provides an upper bound to the amplitude. Similar to the 2D simulation, the 3D statically loaded cantilever is
first studied. The following three meshes are tested for grid convergence and multigrid studies:

� Coarse mesh, 2400 tetrahedral elements.
� First refinement, 3200 tetrahedral elements.
� Final refinement, 10,800 tetrahedral elements.

According to our results, the solutions for single grid and 3-level multigrid are identical. And from the
numerical solution for the final mesh an amplitude error of 1.36% is observed. The tip displacement for this
mesh turns out to be �0.11365 m. Fig. 12 shows the residual history and the convergence acceleration due to
the 3-level multigrid method, which makes the convergence at least three times faster than single-grid solver in
terms of CPU time (CPU times on a SGI O3400 workstation).

Next we will study the performance of the scheme for simulating dynamic loading. The natural frequency of
a fixed-free cantilever [28] is given by
Table

3D Fix

Load,
Length
Breadt
Depth
Densit
Young
Poisso

.0500.050.1Ymax = .066898Ymin = -.081088fixed 3D cantilever.136X. Lv et al. / Journal of Comput
f ¼ 3:516

2pL2

ffiffiffiffiffiffiffiffi
EI
qdb

s
; ð5:3Þ
2

ed-free cantilever computational parameters Value

F 1.0 MN
, L 20.0 m
h, b 2.0 m
, d 2.0 m
y, q 2600.0 kg/m3

’s modulus, E 17.8 GPa
n’s ratio, m 0.3

ational Physics 225 (2007) 120–144
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where I is the moment of inertia in the plane or the second moment of area of the cantilever about the neutral
axis [13] and is given by
I ¼
Z 1

2b

�1
2b

z2 dA ¼ db3

12
: ð5:4Þ
Using the same parameters in Table 2, from Eqs. (5.3) and (5.4), the 3D fixed-free cantilever has a funda-
mental natural frequency of 2.1134 Hz with a period of oscillation of 0.4732 s. To capture the sinusoidal
motion of the structure accurately, the time step for the solver is set to 0.05 s. The load is exerted on the ini-
tially un-deformed 3D cantilever and then kept until the static equilibrium state of the cantilever is reached,
after which the load is suddenly removed. The calculated tip displacement history is depicted in Fig. 13. The
computed period is 0.4893 s, which again agrees well with the theoretical one. As pointed out by Slone in [28],
for accuracy considerations, the updating of the cantilever grid in this study is based on the initial position and
the total displacement method. In order to accelerate the convergence rate, the multigrid method is used for all
of the 3D problems.

5.2. Three-dimensional fixed-free cantilever immersed in fluid flow

The basic configurations of the problem are shown in Fig. 14 and the boundary conditions include an
inflow boundary on the top of the domain, outflow boundary at the bottom and a non-slip wall boundary
to which the cantilever is clamped. A symmetry plane is also used to divide the field into two halves because
of its geometric symmetry. The fluid domain is meshed using 1,307,075 tetrahedral elements and the overall
dimensions are: depth d ¼ 2:0 m, breadth b ¼ 2:0 m and length l ¼ 20:0 m. The cantilever is meshed using
12,196 tetrahedral elements. The Reynolds number and inflow Mach number are set to 18:7� 105 and
0.05, respectively, for this case. The material properties of the cantilever are: Young’s modulus 21.0 GPa, Pois-
son’s ration 0.3 and density 2600 kg/m3. The fluid is air and the free stream density is 1.293 kg/m3. According
to Eq. (5.3), the cantilever has a period of oscillation of 0.4356 s. The simulation time step is taken as 0.025 s.
The gravity force is also ignored in the simulation. The stress distribution in the cantilever in its final equilib-
rium state is shown in Fig. 15 and the tip vertical displacement history is depicted in Fig. 16, while the flow
field in the final steady state is shown in Figs. 17–19, respectively. They show that while the beam is oscillating,
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a complex flow field is also developing under the beam and the wake region fluctuates with the beam
accordingly.

A grid convergence study for this case is also performed to evaluate the accuracy of the proposed numerical
methods. Four successively finer meshes, with 434,572, 921,586, 1,307,075, and 1,908,265 tetrahedral cells,
respectively, are used for error analysis, and the finest-mesh solution is considered to be the ‘exact’ solution.
On all the grids the same physical time step (Dt ¼ 0:01T ) is employed in order to concentrate on the spatial res-
olution of the method. For all the grids, the L1 and Lq norms of the u-velocity errors are calculated as follows:
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where e1j and eq
j are the infinity and qth error norms on the jth grid, ui is the u-velocity component at the ith

node of the current mesh, and ue
i is the interpolated ‘exact’ velocity field from the results calculated on the

finest grid. N is the number of grid nodes of current grid. The results of the grid convergence study are sum-
marized in Fig. 20, which shows the variation of the L1, L1 and L2 norms of errors with grid spacing in log-
arithmic coordinates. The lines with slope one and two are also given as references. It is evident from the
figure that the methods are generally second-order accurate. To further demonstrate the accuracy of our
methods, we also use the Richardson estimation procedure to study the accuracy of the solver. Let fj denote
190813 959400 959400-2.2E+082E+07-1.8E+08
-7.24445E+07-4E+07-4E+07 -6E+07 -6.58168E+07-4E+07-4E+07-2.2E+08 -1.4E+08 -7.24445E+07 -6E+07 2E+07d-free cantilever immersed in fluid.



Fig. 17. V velocity contours in XY plane, Re ¼ 18:7� 105.
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the numerical solution on the jth mesh. Assume that the numerical solution is a c-order approximation to its
value fexact, and the flow field is continuous and has no singularity points, then we have
c ¼ logðkf ðjÞ � f ðj�1Þk=kf ðj�1Þ � f ðj�2ÞkÞ
log 2

;

�

3 - D M E S H V e l o c i t y , V o r t i c i t y , P r e s s u r e , D e n s i t y P l o t
where i i denotes an error norm (L1, L1 or L1). If c � 2 the solution is second-order accurate. We apply the
above procedure for j ¼ 4 (involving interpolation of solutions from j ¼ 2, 3 to j ¼ 4) to calculate c for suc-
cessively refined meshes. And we use all three norms to compute the error and the results are summarized in
Table 3, which demonstrates the second-order accuracy of the methods.
. 0 5 0 - 0 . 0 5r a m e 0 0 1
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1 3 M a r 2 0 0 6
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5.3. A comparison with an existing solver

To further demonstrate and evaluate the performance of the proposed basic structural solver, both the sol-
ver and a commercial solver (ANSYS 9.0) are used to simulate the equilibrium state of the point loaded 3D
fixed-free cantilever as used in the above FSI calculation, with a load of 1.0 MN. The geometry and material
properties of the cantilever remain the same.-1.4
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Table 3
Rate of convergence c calculated for different error norms

Norm Grids

j ¼ 2; 3; 4

L1 1.93
L1 2.18
L1 2.15
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Using the given parameters, the theoretical value of the vertical displacement of the tip is 0.0952381 m.
Four meshes are tested here:

� grid one, 3950 tetrahedral elements;
� grid two, 6412 tetrahedral elements;
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� grid three, 12,196 tetrahedral elements;
� grid four, 19,183 tetrahedral elements.

Fig. 21 shows a comparison of the computational times (CPU times on a SGI O3400 workstation) used by
the proposed basic structural solver and ANSYS 9.0. It is found that the two solvers use almost the same
amount of CPU time to make the residual drop to the same level (at R=R0 ¼ 10�5), with the current solver
being slightly more efficient when the mesh density is increased. Fig. 22 shows a comparison of grid conver-
gence for the proposed solver and ANSYS 9.0. It can be observed that the current solver can produce faster
convergence toward the exact solution than ANSYS. From the above comparisons, we can conclude that the
proposed basic solver is comparable to established solvers in terms of efficiency and accuracy. With the use of
multigrid, the efficiency will be significantly improved, as demonstrated in Section 5.1.2.

6. Conclusions

A novel 3D matrix-free implicit unstructured multigrid structural dynamic finite-volume solver has been
successfully developed and validated. The convergence of numerical solutions is found to be significantly
improved with the help of the implicit unstructured multigrid method. The efficiency and accuracy of the sol-
ver is fully validated using a point loaded fixed-free cantilever, for which both 2D and 3D static and dynamic
cases are throughoutly tested. Through the case involving a fixed-free cantilever immersed in fluid flow it is
found that the current FV structural dynamic solver works well with our unstructured grid FV compressible
fluid solver TETRAKE as well as the immersed membrane method [19]. These studies demonstrate the poten-
tial capability of the proposed method for large-scale complex fluid–structure interaction simulation.

References

[1] D.R.J. Owen, E. Hinton, Finite Elements in Plasticity: Theory and Practice, Pineridge Press Ltd, Swansea, UK, 1980.
[2] O.C. Zienkiewicz, R.L. Taylor, The Finite Element MethodBasic Formulation and Linear Problems, vol. 1, McGraw-Hill,

Maidenhead, UK, 1989.
[3] S.V. Patanker, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, 1980.
[4] C. HirschNumerical Computation of Internal and External Flows: Fundamentals of Numerical Discretization, vol. 1, Wiley, New

York, 1988.
[5] O.C. Zienkiewicz, Origins, milestones and directions of the finite element method – a personal view, Archives of Computational

Methods in Engineering 2 (1995) 1–48.
[6] E. Onate, M. Cervera, O.C. Zienkiewicz, A finite volume format for structural mechanics, International Journal for Numerical

Methods in Engineering 37 (1994) 181–201.
[7] G.A. Taylor, A vertex-based discretization scheme applied to material non-linearity within a multi-physics finite volume framework,

Ph.D. Thesis, The University of Greenwich, 1996.
[8] I. Demirdzic, D. Martinovic, Finite volume method for thermo-elasto-plastic stress analysis, Computer Methods in Applied

Mechanics and Engineering 109 (1992) 331–349.
[9] J.H. Hattel, P.N. Hansen, A control volume-based finite difference method for solving the equilibrium equations in terms of

displacements, Applied Mathematical Modelling 19 (1995) 210–243.
[10] M.A. Wheel, A geometrically versatile finite volume formulation for plane elastostatic stress analysis, Journal of Strain Analysis 31 (2)

(1996) 111–116.
[11] M.A. Wheel, A mixed finite volume formulation for determining the small strain deformation of incompressible materials,

International Journal for Numerical Methods in Engineering 44 (1999) 1843–1861.
[12] H. Jasak, H.G. Weller, Application of the finite volume method and unstructured meshes to linear elasticity, International Journal for

Numerical Methods in Engineering 48 (2000) 267–287.
[13] Y.D. Fryer, C. Bailey, M. Cross, C.-H. Lai, A control volume procedure for solving the elastic stress–strain equations on an

unstructured mesh, Applied Mathematical Modelling 15 (1991) 639–645.
[14] C. Bailey, M. Cross, A finite volume procedure to solve elastic solid mechanics problems in three dimensions on an unstructured

mesh, International Journal for Numerical Methods in Engineering 38 (1995) 1757–1776.
[15] I. Demirdzic, S. Muzaferija, Finite volume method for stress analysis in complex domains, International Journal for Numerical

Methods in Engineering 37 (1994) 3751–3766.
[16] B.R. Baliga, S.V. Patanker, A new finite-element formulation for convection–diffusion problems, Numerical Heat Transfer 3 (1980)

393–409.
[17] V. Selmin, The node-centred finite volume approach: bridge between finite differences and finite elements, Computer Methods in

Applied Mechanics and Engineering 102 (1992) 107–138.



144 X. Lv et al. / Journal of Computational Physics 225 (2007) 120–144
[18] S.R. Idelsohn, E. Onate, Finite volumes and finite elements: two ‘Good Friends’, International Journal for Numerical Methods in
Engineering 37 (1994) 3323–3341.

[19] X. Lv, Y. Zhao, et al., An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady
compressible flows with moving objects, Journal of Computational Physics 215 (2) (2006) 661–690.

[20] C.H. Tai, Y. Zhao, A finite volume unstructured multigrid method for efficient computation of unsteady incompressible viscous flows,
International Journal for Numerical Methods in Fluids 46 (1) (2004) 59–84.

[21] R.T. Fenner, Engineering Elasticity: Applications of Numerical and Analytical Techniques, Ellis Horwood, 1986.
[22] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 1982.
[23] T.J.R. Hughes, The Finite Element MethodLinear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ,

1987.
[24] R.D. Blevins, Flow Induced Vibration, Van Nostrand, Rheinhold, 1977.
[25] R.R. Craig Jr., Structural Dynamics, Wiley, New York, 1981.
[26] S.W. Key, Transient response by time integration, in: J. Donéa (Ed.), Advanced Structural Dynamics, Applied Science Publishers,
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